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1 Problem Description

Consider a graph G(V,E) with vertex set V and edge set E. We seek to find the set of k
vertices that would construct a subgraph G̃(Ṽ , Ẽ) such that G̃ is the k-densest subgraph of
G. Define W ∈ <|V |×|V | as the connectivity matrix. Thus W (i, j) represents the weight of
the edge between node i and node j, and is 0 if there is no edge between node i and node
j. The density of a graph is defined to be the sum of its weights. The goal of this project
is to find a computationally tractable way to find (exactly or approximately) the set of k
vertices Ṽ , and all of their corresponding edges Ẽ, such that the density of the subgraph G̃
is maximized.

2 Literature Review

The problem of finding the densest k-subgraph is shown to be NP-hard (as it is a reduction
of the maximum clique problem [FS97], [ST05], [SW99], [FPK01]). [FS97] shows that while
it is NP-hard to solve the densest k-subgraph problem, it is not NP-hard to distinguish
between graphs that contain a k-clique and graphs in which the densest k-vertex subgraph
has only (1− ε)

(
k
2

)
edges. With their SDP formulation, however, they show that the optimal

solution need not detect the k-clique for k ≈ n1/3. The work of [FS97] and [SW99] also
use semidefinite programming to solve the densest k-subgraph problem, whereas [FPK01],
[BCC+10] use combinatorial approximation algorithm. Another closely related problem is
that of finding the k-subgraph with maximum algebraic connectivity (which is defined to be
the second smallest eigenvalue of the Laplacian). For a review on using convex optimization
of graph Laplacian eigenvalues, see [Boy06]. See [dA07] and [GB06b] for more discussions
on algebraic connectivity. The work of [GB06a] considers the problem of growing a well-
connected graph by adding edges to the graph such that the connectivity is maximally
increased. They choose the edges based on the difference in the entries of the Fiedler vector.
The work of [Hal70] considers the problem of placing k nodes in a space such that the total
pairwise inter-node distance is minimized. It is shown that choosing the Fiedler vector can
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result in an optimal placement strategy. Furthermore, it shows that the entries of the Fiedler
vector can be used to cluster the data points into groups.

We also apply our method to Erdös-Renyi random graphs with a hidden k-clique. If all
edge weights are equal, the densest k-subgraph is the clique. In this special case, we see that
the problem of finding the densest k-subgraph and the maximum clique are equivalent. Some
of the literature on the maximum clique problem can be found at [CP90], [AKS98], [APR99].
The work of [AKS98] presents a polynomial time algorithm that finds the clique of size larger
than n1/2 almost surely. However, if the clique size is of size n1/2−ε, then the problem of
finding the maximum clique is open. For random graphs, the maximum clique is likely to be
of size very close to 2log(n) [Jer06], therefore the problem of finding the maximum clique in
a random graph is still an open problem.

3 Approach

In order to find the k-densest subgraph, we need to solve the following optimization problem:
We can define this problem more concisely as follows:

maximize
∑
i

∑
j

XijWij

such that X = xxT ,
1Tx = k,
x ∈ {0, 1}|V |.

(1)

However, this is a combinatorial optimization problem. We try to solve this problem
by relaxing it in multiple steps to a convex optimization problem so that we can make it
computationally tractable.

The most obvious relaxation would be to relax the equality constraints to inequality
constraints, and relax the integer constraints to bound constraints. Doing so would result in
the following optimization problem:

maximize Tr(WX)/2
such that X � xxT ,

1Tx = k,
0 ≤ x ≤ 1,

(2)

The above optimization problem provides a lower bound on the optimal solution. To
tighten this lower bound, we add some constraints to restrict the set of allowable X matrices.
The new optimization problem is defined as:
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maximize Tr(WX)/2
such that X � xxT ,

1Tx = k,
0 ≤ x ≤ 1,
Xi,j ≤ min(xi, xj),
1T diag(X) = k,
1TX1 = k2.

(3)

Here we try to interpret the added constraints:

• Xi,j ≤ min(xi, xj): First, note that for a binary xi, xj, min(xi, xj) = xixj. Therefore,
this constraint is also a relaxation on X = xxT .

• 1T diag(X) = k: Note that xii = 1 if and only if node i is chosen to be included in the
k-subgraph. Since we need to choose a total of k nodes in the subgraph, we require
that the sum along the diagonal of X be equal to k.

• 1TX1 = k2: Note that in the original problem, we want to have X = xxT ; therefore,
we would have 1TxxT1 = (xT1)2 = k2. We enforce this constraint in the relaxed
problem as well to tighten the lower bound.

4 Optimality in Erdös-Renyi Graphs Augmented with

a k-Clique

Recall that the optimization problem in 3 provides a lower bound on the optimal solution
of 1, and rounding this solution will result in an upper bound on 1. We now consider the
case when G(V,E) is a random G(n, p) graph, augmented with a clique of size k. Then, our
simulations indicate that solving the relaxed problem of 3 yields the optimal solution of 1.,
i.e., the lower bound is tight. That is, solving the problem of 3 results in a binary solution,
thus a zero sub-optimality gap. We have tested our method on multiple graphs. We varied n
from 10 to 120 in increments of 10, and for each graph size we generated 10 random graphs.
We tested three values for p: 1.1, 1.8, and 2.5. For each graph we augmented a clique of size
n0.45 inside the G(n, p). The results are shown in Table 1.

5 Polishing

One way to improve the selection is to make one-step swaps of nodes such that the total
density is increased. More specifically, we swap nodes i and j if doing so increases xTWx, i.e.,
if xTWx−(x−ei+ej)TW (x−ei+ej) < 0. Note that this is a very cheap computation: we can
calculate and store Wx beforehand, and then at each step calculate sign((Wx)i − (Wx)j −
Wij), which is an O(1) operation. We go over all node pairs to determine if switching any
of them will result in a better selection, and repeat the procedure until convergence (which
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Table 1: Simulation results for Erdös-Renyi Graphs Augmented with a k-Clique.
Each entry denotes the average sub-optimality gap for the given n and p.

n
10 20 30 40 50 60 70 80 90 100 110 120

p
1.1 0 0 0 0 0 0 0 0 0 0 0
1.8
2.5

is when there are no changes in one complete pass through all node pairs). Therefore the
polishing step is O(n2), which is cheap compared to the O(n6) convex optimization problem.
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